Long-term ecosystem research & monitoring: from local to global

Development of the UK Environmental Change Network and its role in addressing current and future environmental issues

> Terry PARR twp@ceh.ac.uk

UK Centre for Ecology and Hydrology Natural Environment Research Council

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

Summary

- Brief overview of ECN
 - Integrated approaches to environmental monitoring and research
 - Multi-scale approaches within the UK
 - Networking LTER: site- national-continental-global integration
- Analysis: ECN in relation to
 - Biodiversity and climate change
 - Data resources
- Knowledge transfer and outreach
 - Uses in research, policy and education

The UK:

Many people, much urbanisation, intensive agriculture, continuing economic growth

landscapes are highly modified by human activities

- Multiple drivers and pressures affect the state of biodiversity
- Multiple stakeholders
- Need to predict and manage environmental change impacts

- •Long-term ecosystem research to understand, predict and manage changes
- Inter-disciplinary

Public, policy and media concerns

UK Observation and Research Hierarchy for ecosystem research

Land Cover Map 1990, 2000, 2007

Comprehensive UK coverage

Vector data set containing 6.6 million land parcels (segments)

0.5 ha minimum mappable unit

Widespread Broad Habitats

Landsat

Uses of Land Cover Map data

Atmosphere & climate change

Water & catchments

Marine & coastal

Ecology & conservation

Impact assessment

Health & hazards

Landscape planning

Telecommunications

Urban studies

Statistics, information

Education & publicity

Changing methods

1990

2007

Satellite image & generalised MM

LCM2000 & generalised MM

Classified generalised MM (LCM2007)

Countryside Survey: field survey sampling strategy

www.cs2000.org.uk

32 environmental strata

Based on OS data, climate, soils and geology classified to give 32 land classes

GB covered by 629 1km squares

Components of the field survey

Broad Habitat types and landscape features mapped in each 1km sample square

Sampling of

- vegetation (approx 18,000 plots)
- freshwater biota

• soils

Policy - Hedgerow Protection

Changes in Habitat quality

- Evidence that the condition of habitats declined since 1990
 - GB vegetation is becoming more homogenous

Smart et al. (2006) Biodiversity loss and biotic homogenisation. Proc R Soc

State of the Environment UK Sustainable Development Indicators

CS Research Agenda...

- What has changed?
 ..SIGNAL DETECTION
- What caused the change?
 ..SIGNAL ATTRIBUTION
- Do the changes matter?
 ..UNDERSTANDING CONSEQUENCES FOR ECOSYSTEM SERVICES
- Forecasting and managing change?
 ..UNDERSTANDING PROCESSES

Changes in Habitat quality

- Evidence that the condition of habitats declined since 1990
 - GB vegetation is becoming more homogenous

Smart et al. (2006) Biodiversity loss and biotic homogenisation. Proc R Soc

Key questions - soils (and measurements)

- Is soil carbon changing and what are the drivers
 - LOI, organic C
- Is recovery from acidification continuing?
 - *pH*
- Is eutrophication continuing?
 - %N and available-N
- What are the links between changes in below-ground biodiversity and changes in C and N?
 - Invertebrate diversity, C, N
- Are their good indicators of soil quality and health?
 - Olsen P, available N, LOI, invertebrate diversity, metals

Changing states - soils

Clear evidence of recovery from acidification

Black et al., 2003. J. Env. Manag.

Black, Frogbrook et al., In Prep

New Methods for Looking at Change CS2007 and Molecular Ecology

Soil cores:

Use of molecular techniques e.g. high density "microarray technologies" to assess multiple taxa and relationships to 'soil quality'

- first country-level survey of microbial diversity in terrestrial ecosystems
- establish baseline measurements for future surveys
- UK wide genomic archive of our microbial biodiversity

CS Research Agenda...(2)

What caused the change? ..SIGNAL ATTRIBUTION

- Land use change agriculture & forestry
- Atmospheric pollution
- Non-native species
- urbanisation
- Climate change

Are nitrogen inputs from the atmosphere a major driver of GB vegetation change?

- 2003 Smart *et al* Locating eutrophication effects in vegetation *Global Change Biol* **9** 1763
- 2004 Smart & Scott. Bias in use of Ellenberg N. J Veg Sci 15 843
- 2004 Smart *et al* Detecting signal of atmospheric deposition of N on vegetation change *Water, Air and Soil Pollution* **4** 269

Are non-native species a problem?

Japanese knotweed is not significant in CS

Non-native species often have a big local impact ...

.... but are not yet a big problem in

Number of non-native species per 1km sample square

the wider countryside.

Himalyan balsam only present in 30 plots in 1998

Maskell et al (2006) Non-native plants in common habitats. J Ecol

CS Research Agenda...(3)

Do the changes matter?

.. UNDERSTANDING CONSEQUENCES FOR ECOSYSTEM SERVICES

Loss of Biodiversity

Declines in arable weeds

Declines in butterfly and bird foodplants

Smart *et al* (2000) Changes in abundance in food plants for birds and butterflies *J Appl Ecol* **37** 398

Loss of Pollinators

Decline of bumblebee forage plants 1978-1998

COUNTRYSIDE SURVEY2000

Carvell et al. (2006) Biol. Conservation

Sustainable Land Management Research and Advice

 Prescriptions for sustainable rural land management under agricultural reform

- Catchment management
- Capacity for renewable energy production

CS & Energy Issues

Environmental capacity to provide energy

- CS provides info for:
 - Carbon inventory
 - Wood energy
 - Novel biofuels
 - Wind turbines
 - Critical loads
 - Natural stock at risk

CS Research Agenda...(4)

Forecasting and managing change?

.. UNDERSTANDING PROCESSES

Integrated assessment framework

Millennium Ecosystem Assessment (2003):

How will ecological impacts of different pressures translate into effects on ecosystem services?

CS & Natural Resource Management

How will ecological impacts of different pressures translate into effects on ecosystem services?

Countryside Survey 2007 - Informatics

CS 2007 - Conclusion

STRENGTHS

- Large-scale, long-term policy relevant survey
 - cross-sectoral policy development
 - links field and remote sensing data
- Science outputs and potential
 - major trends and pressures in the countryside
 - implications for key ecosystem services

WEAKNESSES Expensive

Causes of change at ecosystem level - e.g climate change

Forecasting

- e.g future climate change impacts

UK Observation and Research Hierarchy for ecosystem research

UK Environmental Change Network

Rationale and Mission Objectives

1992-

- Collect high-quality long-term data from a UK network of integrated monitoring sites.
- Disseminate data, information and research products for a range of uses in science, policy and the public.
- Analyse data to detect and interpret environmental change.

The UK Environmental Change Network

14 sponsoring and 9 research organisations

Monitoring and research to detect and interpret environmental change

- forecasting

long-term experiments and process studies
42 ECN Freshwater Sites

Disturbed Sites < ------ >Near Pristine Sites

MULLINAU-1

12 ECN Terrestrial Sites

Integrated measurements of pressures, states and ecosystem services

Terrestrial Protocols

- Meteorology
- Atmospheric Chemistry
- Surface water flow & chemistry
- Soil solution chemistry
- Precipitation chemistry
- Soil surveys

- •Vegetation surveys
- •Vertebrates (birds, rabbits, deer, bats, frogs)
- T 1

•Invertebrates

(butterflies, moths,

Freshwater Protocols

- Surface water chemistry
- River discharge
- Continuous pH, temperature, conductivity & turbidity
- Temperature and dissolved oxygen profiles for lakes

Ching

- Chlorophyll *a*
- Invertebrates
- Macrophytes
- Zooplankton

Dhytoplankton

Linking the cause and effects of environmental change

Detecting and attributing change

The value of ECN/LTER Sites

Environmental Change Network at Moor House – Upper Teesdale

Climate warming - "Snow Days" ECN Moor House

ECN Data

Climate effects

Frog Spawning at Moor House

ECN Data

Climate Effects? - Butterflies

ECN Data from Ian Findlay, Butterfly Photos www.butterfly-guide.co.uk

Grazing

Rabbit Density at Moor House

Experiments

Grazing Removal Plots, 1954 to 2001

Burning Plots, Established 1954

Carbon Dynamics and Moor Burning

Garnett, Ineson & Stevenson (2000) The Holocene, 10, 729 - 736

ECN Moor House:

Multi-functional multi-partner research platform Organisations Working at Moor House in 2005

Ecosystem Services - Climate Change Mitigation Are UK upland peats a sink or source of carbon?

Dissolved Organic Carbon in Peat at Moor House

University of Durham

Sustainable Uplands

- What is the future of carbon storage in the uplands?
 - What management strategiescan we use to enhance carbon storage?
- Using models developed and calibrated at Moor House and applying them to Peak District National Park

University of Durham

Detecting and attributing change

The value of UK Networks

Long-term changes in lake ecosystems: trends, causes & consequences

Lake Ecosystem Group Centre for Ecology & Hydrology Lancaster Environment Centre E-mail: scm@ceh.ac.uk

Long-term data on lakes in Cumbria

Over 300 lake-years of data: at least fortnightly (previously weekly or fortnightly) from:

From 1945- Windermere North Basin, Windermere South Basin Esthwaite Water Blelham Tarn

From 1969- Grasmere

From 1990- Derwent Water, Bassenthwaite Lake

Examples of data

Measurements include:

- Profiles of water temperature & O₂
- Light penetration
- Nutrient chemistry
- Phytoplankton species & abundance
- Zooplankton

Fish populations

Regional patterns- the North Atlantic Oscillation & winter weather Positive NAO

- +ve NAOI produces relatively wet, mild, windy winters
- -ve NAOI produces relatively dry, cold, calm winters

Differential sensitivity

Changes in timing of events

Match-mismatch?

<u>Cf. Walther et al. 2002</u>	<u>day yr⁻¹</u>
Plant flowering/leaf break	0.14 - 0.31
Butterfly emergence	0.28 - 0.32
Bird migration	0.13 - 0.14
Bird breeding	0.19 - 0.48

Conclusions

- Long-term data are invaluable in documenting how lakes have responded to perturbation in the past and forecasting how they may respond in the future
- Weather patterns (Gulf stream, NAO) will influence lakes regionally
- Not all lakes will be equally sensitive to given aspects of climate change
- Lakes are complex ecosystems that respond to changes in the catchment *and* atmosphere
- Modelling in conjunction with long-term data, is a powerful method of attribution and of forecasting responses to future conditions

Are we losing biodiversity? Why? And so what?

LTER sites measure biodiversity, pressures and ecosystem services.

FROGS – CLIMATE EFFECTS ON LIFE HISTORY Trends in breeding dates. Overall extension of breeding season

Towards indicators of Climate Change Impacts Effects of 1995 drought on insects in the UK (Data from 10 ECN sites)

- can identify species of particular functional types that are likely to respond to climate change
- E.g southern species with high mobility

Changing Distributions – increases in "Southern" species

234567

١ğ

10

16

Ground Beetles An Index of Southern-ness based on species' distributions

Roy Anderson DARD(NI)

Carabid beetles-Key part of food chain,

Climate Impact Indicators "A Biodiversity Strategy for England" 2002

INDICATORS OF CLIMATE CHANGE IN THE UK

Working with the grain of nature A biodiversity strategy for England

DEFRA Department for Environment, Food & Rural Affa "Indicator C1: a climate change impact indicator based on changes in the abundance of climate sensitive species in ECN sites"

Biodiversity and climate change UK & European Policy Context

DEFRA Department for Environment, Food & Rural Affairs

MSOffic

1. Will climate change prevent us meeting our legal obligation to protect wildlife in designated sites?

2. How many sites and what measurements would we need to "prove" climate change and air pollution impacts on nature conservation sites?

幻灯片 66

MSOffice12 at

ate , 2006-5-23

Targeted Monitoring Network – Design

Compare sites in:

High v low climate change areas High v low atmospheric pollution

Measurements

- Climate
- Air pollution
- Wet deposition pH, nitrate, ammonium, sulphate
- Ammonia concentration diffusion tubes
- Total nitrogen deposition
- Soil chemistry and physical description
- Vegetation composition
- Butterflies
- Birds
- Satellite remote sensing of phenology
- Site management

Cost - c. \$10,000 /site/year

40-90 sites needed

LTER: Demonstration & Research Sites

Sites for science, training and education

Understanding the processes of environmental change and their impacts on biodiversity and ecosystem services

Knowledge Management & Communication in ECN

Educational Outreach The "Climate Change Explorer"

working with artists and schools to inform people about climate change

 Phase II – funded by Department of Environment to raise awareness of climate change amongst young people

Open Access to Data

- 6 🛛

Environmental Change Network (ECN) Home Page - Microsoft Internet Explorer

File Edit View Favorites Tools

Summary Data - trends

Applications – Research Surveillance

Joining up data for ecosystem and climate impact research

from data to knowledge for environmental management and policy.

Detecting and attributing change

International Networks

European Networking for Biodiversity and Ecosystem Research: capacity building

LTER-Europe – established June 2007 Chair Michael Mirtl: UBA, Austria

Knowledge from European LTER sites

Examples:

Adding the human dimension

Decisions affecting biodiversity must take into account the social, cultural and political context

A network of sites in which social scientists and ecologists work together:

- •Deliberative events
- •Public attitudes
- Conflict resolution
- Policy

Lower Danube, Romania

The DPSIR Indicator and Research Framework

Drivers:Pressure:State:Impact:Response (DPSIR)

Global Networking of Ecosystem research sites

Some Global Drivers

Millennium Ecosystem Assessment:

• need for scientific information on the consequences of ecosystem change for human well-being and options for responding.

Global Earth Observation System of Systems

- Integrated Earth Observation Systems linking in situ and remote sensing data
 - Gleneagles G8 Summit 2005
 - Commitment to implement in member states and developing countries
 - Address 9 societal benefit areas including climate change and biodiversity

ILTER and Ecosystem and Biodiversity Research: Long-term ambitions

To provide a global infrastructure for process based research, observations, and training relevant to global change and sustainable development issues.

A key component of national, regional and global programmes (GEOSS)

Relevant global scale research outcomes and products

Some priority research questions based on national responses

Synthesis from ILTER, Mexico Nov 2005

- 1. What are the effects of key pressures and their interactions on biodiversity?
 - Climate change, air pollution (N,S), land use change (including GM crops), grazing
- 2. Relationship between biodiversity and ecosystem services
- 3. Biodiversity assessment and indicators
 - Surrogates for biodiversity assessment
 - Use of functional groups
 - Measures of critical natural capital
- 4. Critical thresholds
 - The point at which loss of biodiversity affects ecosystem services
 - Have we already gone beyond that point?

ILTER – The Future For Global Ecosystem Research

Research